WiFiMon Hardware Probes (WHP) are used to gather performance measurements in a WiFi network from dedicated small form factor devices which are installed in fixed points. WiFiMon tested its operation and recommends the use of Raspberry Pi’s v3 Model B+ or v4. WiFiMon Hardware Probe will work in the following configuration:
- A Raspberry Pi 3 Model B+ or a newer model
- A micro SD card with at least 16GB
- WiFiMon Raspberry Pi operating system image (Installation option 1) or Raspberry Pi with installed Raspberry Pi OS (Installation option 2)
Setting up the WHP
There are two options for the WHP installation:
- Installation and configuration from the prepared WiFiMon WHP image (Installation option 1)
- Installation and configuration on the Raspberry Pi with already installed Raspberry Pi OS (Stretch or later) (Installation option 2)
Installation and configuration
The following steps apply for both installation options. WiFiMon users who will use the prepared WHP image (installation option 1) should simply edit the crontab and wireless.py and twping_parser.py files as discussed in the following. WiFiMon users who will not use the prepared WIFiMon WHP image (installation option 2) should follow the steps 2 up to 5.
Step 1: Write the image to the micro SD card
Follow the instructions at the official Raspberry Pi site. Skip the "Download the image" step and use the WiFiMon Raspberry Pi operating system image instead (download size is approx. 3 GB).
WiFiMon Raspberry Pi image given above is a custom version of Raspberry Pi OS (Buster) with desktop, with the default Raspberry Pi credentials (user: pi, password: raspberry).
We advise the user to always secure Raspberry Pi by changing the default password.
Step 2: Start the Raspberry Pi
Follow the simple steps below:
- Insert the microSD in the Raspberry Pi
- Plug the USB keyboard into one of the USB ports (or USB wireless adapter for keyboard and mouse)
- Plug the USB mouse into one of the USB ports
- Connect the monitor cable to the Pi's HDMI port
- Plug the power supply into a socket and connect it to the micro USB power port
You should see a red light on the Raspberry Pi and raspberries on the monitor. The WiFiMon Hardware Probe will boot up into a graphical desktop.
Step 3: Configure the Raspberry Pi
Secure the Raspberry Pi by changing the default password. Optionally, you may enable SSH to access the command line of a Raspberry Pi remotely or setup remote desktop. Next, you have to connect to the wireless network you want to measure.
First, the following programs should be downloaded:
sudo apt-get update sudo apt-get install -y xvfb firefox-esr
The WiFiMon Hardware Probe (WHP) performs performance tests towards the WiFiMon Test Server (WTS) in an automated manner. It uses crontab to schedule the tests. To do that, open the terminal (as user "pi") and enter the command: crontab -e. You will have to pick the text editor. Then scroll to the bottom of the file and add the following code block (which you will modify as explained below):
00,10,20,30,40,50 * * * * Xvfb :100 & 02,12,22,32,42,52 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_nettest.html >/dev/null 2>&1 04,14,24,34,44,54 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_speedworker.html >/dev/null 2>&1 06,16,26,36,46,56 * * * * export DISPLAY=:100 && firefox-esr --new-tab URL_TO_boomerang.html >/dev/null 2>&1 08,18,28,38,48,58 * * * * /home/pi/wireless.py >> ~/cron.log 2>&1 05,15,25,35,45,55 * * * * /home/pi/twping_parser.py >> ~/cron.log 2>&1
You have to modify the following parts of the crontab in lines 2-4:
- URL_TO_nettest
- URL_TO_speedworker
- URL_TO_boomerang
You should put the URL or IP address of the WTS in which the NetTest, speedtest and boomerang JS scripts are injected. Details about the configuration of the WiFiMon testtools are included in the WiFiMon Test Server (WTS) installation documentation. Following the assumptions/notations of the WTS guide, examples of the URLs for NetTest, speedtest and boomerang respectively are (i) https://WTS_FQDN/wifimon/measurements/nettest.html, (ii) https://WTS_FQDN/wifimon/measurements/speedworker.html and (iii) https://WTS_FQDN/wifimon/measurements/boomerang.html.
Line 5 of the crontab is related to the streaming of wireless network interface metrics to the WiFiMon Analysis Server (WAS). Optionally, the intervals of the WHP measurements could be altered by appropriately configuring the crontab so that measurement are more or less frequent. The configuration of the crontab config given above sets up 10-minute intervals between the measurements of each test tool in a way in which there are no overlapping measurements.
Line 6 of the crontab is related to the streaming of TWAMP measurement results to the WiFiMon Analysis Server (WAS).
Step 4: Streaming Wireless Network Interface Metrics to the WiFiMon Analysis Server (WAS)
In /home/pi, you will find the Python script wireless.py. The contents of the script are the following:
#!/usr/bin/python3 import subprocess import datetime import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) import json def return_command_output(command): proc = subprocess.Popen(command, stdout = subprocess.PIPE, shell = True) (out, err) = proc.communicate() output = out.rstrip('\n'.encode('utf8')) return output def get_mac(iface): command = "cat /sys/class/net/" + str(iface) + "/address" mac = return_command_output(command).decode('utf8') mac = mac.replace(":", "-") return mac def find_wlan_iface_name(): command = "printf '%s\n' /sys/class/net/*/wireless | awk -F'/' '{print $5 }'" wlan_iface_name = return_command_output(command) return wlan_iface_name.decode('utf8') def parse_iwconfig(iface): bit_rate = return_command_output("sudo iwconfig " + iface + " | grep Bit | awk '{print $2}' | sed 's/Rate=//'").decode('utf8') tx_power = return_command_output("sudo iwconfig " + iface + " | grep Bit | awk '{print $4}' | sed 's/Tx-Power=//'").decode('utf8') link_quality = return_command_output("sudo iwconfig " + iface + " | grep Link | awk '{print $2}' | sed 's/Quality=//'").decode('utf8') link_quality = link_quality.split("/")[0] signal_level = return_command_output("sudo iwconfig " + iface + " | grep Link | awk '{print $4}' | sed 's/level=//'").decode('utf8') accesspoint = return_command_output("sudo iwconfig " + iface + " | grep Mode | awk '{print $6}' | sed 's/Point: //'").decode('utf8') accesspoint = accesspoint.replace(":", "-") essid = return_command_output("sudo iwconfig " + iface + " | grep ESSID | awk '{print $4}' | sed 's/ESSID://'").decode('utf8') essid = essid.replace("\"", "") return bit_rate, tx_power, link_quality, signal_level, accesspoint, essid def parse_iwlist(iface, accesspoint): information = {} command = "sudo iwlist " + iface + " scan | grep -E \"Cell|Frequency|Quality|ESSID\"" aps = return_command_output(command).decode("utf8") aps = aps.split("\n") cell_indices = list() for index in range(0, len(aps)): line_no_whitespace = ' '.join(aps[index].split()) parts = line_no_whitespace.split() if parts[0] == "Cell": cell_indices.append(index) for index in cell_indices: line0 = ' '.join(aps[index].split()) ap_mac = line0.split()[-1] ap_mac = ap_mac.replace(":", "-") information[ap_mac] = {} line1 = ' '.join(aps[index + 1].split()) frequency = line1.split()[0].split(":")[1] information[ap_mac]["frequency"] = str(frequency) line2 = ' '.join(aps[index + 2].split()) parts = line2.split() information[ap_mac]["drillTest"] = float(parts[2].split("=")[1]) line3 = ' '.join(aps[index + 3].split()) parts = line3.split(":") information[ap_mac][str(parts[1].replace('"', ''))] = information[ap_mac]["drillTest"] return information def convert_info_to_json(accesspoint, essid, mac, bit_rate, tx_power, link_quality, signal_level, probe_no, information, location_name, test_device_location_description, nat_network, system_dictionary): overall_dictionary = {} overall_dictionary["macAddress"] = "\"" + str(mac) + "\"" overall_dictionary["accesspoint"] = "\"" + str(accesspoint) + "\"" overall_dictionary["essid"] = "\"" + str(essid) + "\"" bit_rate = int(float(bit_rate)) overall_dictionary["bitRate"] = str(bit_rate) tx_power = int(float(tx_power)) overall_dictionary["txPower"] = str(tx_power) link_quality = int(float(link_quality)) overall_dictionary["linkQuality"] = str(link_quality) signal_level = int(float(signal_level)) overall_dictionary["signalLevel"] = str(signal_level) overall_dictionary["probeNo"] = str(probe_no) information = json.dumps(information) overall_dictionary["monitor"] = information overall_dictionary["locationName"] = "\"" + str(location_name) + "\"" overall_dictionary["testDeviceLocationDescription"] = "\"" + str(test_device_location_description) + "\"" overall_dictionary["nat"] = "\"" + str(nat_network) + "\"" system_dictionary = json.dumps(system_dictionary) overall_dictionary["system"] = system_dictionary json_data = json.dumps(overall_dictionary) return json_data def processing_info(): command = '''echo "$(iostat | head -1 | awk '{print $1}')"''' operating_system = return_command_output(command).decode('utf8') command = '''echo "$(iostat | head -1 | awk '{print $2}')"''' driver_version = return_command_output(command).decode('utf8') command = '''echo "$(iostat | head -1 | awk '{print $6}' | cut -c 2-)"''' total_cores = return_command_output(command).decode('utf8') command = '''echo "$(vmstat 1 2|tail -1|awk '{print $15}')"''' cpu_utilization = 100 - int(return_command_output(command).decode('utf8')) command = '''echo "$(vmstat --stats | grep 'total memory' | tail -1 | awk '{print $1}')"''' total_memory = return_command_output(command).decode('utf8') command = '''echo "$(vmstat --stats | grep 'used memory' | tail -1 | awk '{print $1}')"''' used_memory = return_command_output(command).decode('utf8') command = '''echo "$(df -h / | tail -1 | awk '{print $2}')"''' total_disk_size = return_command_output(command).decode('utf8') command = '''echo "$(df -h / | tail -1 | awk '{print $3}')"''' used_disk_size = return_command_output(command).decode('utf8') system_dictionary = {} system_dictionary["operatingSystem"] = str(operating_system) system_dictionary["driverVersion"] = str(driver_version) system_dictionary["totalCores"] = str(total_cores) system_dictionary["cpuUtilization"] = str(cpu_utilization) system_dictionary["totalMemory"] = str(total_memory) system_dictionary["usedMemory"] = str(used_memory) system_dictionary["totalDiskSize"] = str(total_disk_size) system_dictionary["usedDiskSize"] = str(used_disk_size) return system_dictionary def stream_data(data): headers = {'content-type':"application/json"} try: session = requests.Session() session.verify = False session.post(url='https://WAS_FQDN:443/wifimon/probes/', data=data, headers=headers, timeout=30) except: pass def set_location_information(): location_name = "" test_device_location_description = "" nat_network = "" return location_name, test_device_location_description, nat_network def wireless_info(): system_dictionary = processing_info() location_name, test_device_location_description, nat_network = set_location_information() iface_name = find_wlan_iface_name() mac = get_mac(iface_name) bit_rate, tx_power, link_quality, signal_level, accesspoint, essid = parse_iwconfig(iface_name) information = parse_iwlist(iface_name, accesspoint) probe_no = "" json_data = convert_info_to_json(accesspoint, essid, mac, bit_rate, tx_power, link_quality, signal_level, probe_no, information, location_name, test_device_location_description, nat_network, system_dictionary) stream_data(json_data) if __name__ == "__main__": wireless_info()
The following values should be set:
- "probe_no" (line 145) should match the number assigned to the testtools of the particular WiFiMon Hardware Probe (WHP), e.g. for the WHP assigned the number 1, the value should be "1". Assigning numbers to WHPs is possible by appropriately setting the testtool attribute included in the websites monitored by them. More information related to assigning number to WHPs is available in the WiFiMon Test Server installation guide.
- "WAS_FQDN" (line 128) should match the FQDN of the WiFiMon Analysis Server (WAS) responsible for processing the wireless performance metrics of the WHP. The above code block assumes that the WAS uses https and port 443.
- LInes 133 to 135 can be filled with more information regarding the location of the WHP.
Step 5: Streaming TWAMP Measurement Results to the WiFiMon Analysis Server (WAS)
In /home/pi, you will find the Python script twping_parser.py. The contents of the script are the following:
''' Sample twping output (MIND THE NAMING OF THE LINES) line 0: --- twping statistics from [192.168.1.1]:9706 to [192.168.1.2]:19642 --- line 1: SID: c0a80102e5e36a42b8a73f74cec8780e line 2: first: 2022-03-21T23:18:58.819 line 3: last: 2022-03-21T23:19:10.456 line 4: 100 sent, 0 lost (0.000%), 0 send duplicates, 0 reflect duplicates line 5: round-trip time min/median/max = 0.109/0.3/1.07 ms, (err=3.8 ms) line 6: send time min/median/max = 936/936/936 ms, (err=1.9 ms) line 7: reflect time min/median/max = -936/-936/-935 ms, (err=1.9 ms) line 8: reflector processing time min/max = 0.00191/0.021 ms line 9: two-way jitter = 0.1 ms (P95-P50) line 10: send jitter = 0.1 ms (P95-P50) line 11: reflect jitter = 0 ms (P95-P50) line 12: send hops = 0 (consistently) line 13:reflect hops = 0 (consistently) ''' import subprocess import json import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def return_command_output(command): ''' Execute a command and return its output ''' proc = subprocess.Popen(command, stdout = subprocess.PIPE, shell = True) (out, err) = proc.communicate() output = out.rstrip('\n'.encode('utf8')) return output def perform_twping(twamp_server_ip): ''' Perform the twping command and retrieve its output in milliseconds ''' command = "twping " + str(twamp_server_ip) + " -n m -B wlan0" twping_results = return_command_output(command).decode('utf8') return twping_results def locate_twping_data(twping_output): ''' Find the line at which the important part of the twping output starts ''' twping_output_parts = twping_output.split('\n') line_to_start = 0 for line in twping_output_parts: initial_three_chars = line[0:3] if initial_three_chars == "---": break line_to_start += 1 return line_to_start # Parse lines one by one. Look at the top for the numbering of the lines def parse_line4(line4): parts = line4.split(" ") sent, lost, send_dups, reflect_dups = parts[0], parts[2], parts[5], parts[8] return sent, lost, send_dups, reflect_dups def parse_times(line): parts = line.split(" ") min_median_max = parts[4].split("/") minimum, median, maximum = min_median_max[0], min_median_max[1], min_median_max[2] err = parts[6].split("=")[1] return minimum, median, maximum, err def parse_line8(line): parts = line.split(" ") time_unit = parts[-1] minimum = parts[-2].split("/")[0] maximum = parts[-2].split("/")[1] return minimum, maximum def parse_jitter(line): parts = line.split(" ") value = parts[3] characterization = parts[5][1:-1] return value, characterization def parse_hops(line): parts = line.split(" ") value = parts[3] characterization = parts[4][1:-1] return value, characterization def form_json(probe_number, twamp_server, sent, lost, send_dups, reflect_dups, min_rtt, median_rtt, max_rtt, err_rtt, min_send, median_send, max_send, err_send, min_reflect, median_reflect, max_reflect, err_reflect, min_reflector_processing_time, max_reflector_processing_time, two_way_jitter_value, two_way_jitter_char, send_jitter_value, send_jitter_char, reflect_jitter_value, reflect_jitter_char, send_hops_value, send_hops_char, reflect_hops_value, reflect_hops_char): ''' Create a json object with the parsed values. Values are first stored in a dictionary. ''' overall_dictionary = {} overall_dictionary["probeNumber"] = probe_number overall_dictionary["twampServer"] = twamp_server overall_dictionary["sent"] = sent overall_dictionary["lost"] = lost overall_dictionary["sendDups"] = send_dups overall_dictionary["reflectDups"] = reflect_dups overall_dictionary["minRtt"] = min_rtt overall_dictionary["medianRtt"] = median_rtt overall_dictionary["maxRtt"] = max_rtt overall_dictionary["errRtt"] = err_rtt overall_dictionary["minSend"] = min_send overall_dictionary["medianSend"] = median_send overall_dictionary["maxSend"] = max_send overall_dictionary["errSend"] = err_send overall_dictionary["minReflect"] = min_reflect overall_dictionary["medianReflect"] = median_reflect overall_dictionary["maxReflect"] = max_reflect overall_dictionary["errReflect"] = err_reflect overall_dictionary["minReflectorProcessingTime"] = min_reflector_processing_time overall_dictionary["maxReflectorProcessingTime"] = max_reflector_processing_time overall_dictionary["twoWayJitterValue"] = two_way_jitter_value overall_dictionary["twoWayJitterChar"] = two_way_jitter_char overall_dictionary["sendJitterValue"] = send_jitter_value overall_dictionary["sendJitterChar"] = send_jitter_char overall_dictionary["reflectJitterValue"] = reflect_jitter_value overall_dictionary["reflectJitterChar"] = reflect_jitter_char overall_dictionary["sendHopsValue"] = send_hops_value overall_dictionary["sendHopsChar"] = send_hops_char overall_dictionary["reflectHopsValue"] = reflect_hops_value overall_dictionary["reflectHopsChar"] = reflect_hops_char json_data = json.dumps(overall_dictionary) return json_data def parse_twping(twping_output, line_to_start, probe_number): ''' Parse twping output line by line ''' twping_output_parts = twping_output.split('\n') sent, lost, send_dups, reflect_dups = parse_line4(twping_output_parts[line_to_start + 4]) min_rtt, median_rtt, max_rtt, err_rtt = parse_times(twping_output_parts[line_to_start + 5]) min_send, median_send, max_send, err_send = parse_times(twping_output_parts[line_to_start + 6]) min_reflect, median_reflect, max_reflect, err_reflect = parse_times(twping_output_parts[line_to_start + 7]) min_reflector_processing_time, max_reflector_processing_time = parse_line8(twping_output_parts[line_to_start +8]) two_way_jitter_value, two_way_jitter_char = parse_jitter(twping_output_parts[line_to_start + 9]) send_jitter_value, send_jitter_char = parse_jitter(twping_output_parts[line_to_start + 10]) reflect_jitter_value, reflect_jitter_char = parse_jitter(twping_output_parts[line_to_start + 11]) send_hops_value, send_hops_char = parse_hops(twping_output_parts[line_to_start + 12]) reflect_hops_value, reflect_hops_char = parse_hops(twping_output_parts[line_to_start + 13]) json_data = form_json(probe_number, twamp_server, sent, lost, send_dups, reflect_dups, min_rtt, median_rtt, max_rtt, err_rtt, min_send, median_send, max_send, err_send, min_reflect, median_reflect, max_reflect, err_reflect, min_reflector_processing_time, max_reflector_processing_time, two_way_jitter_value, two_way_jitter_char, send_jitter_value, send_jitter_char, reflect_jitter_value, reflect_jitter_char, send_hops_value, send_hops_char, reflect_hops_value, reflect_hops_char) return json_data def stream_data(json_data): ''' Stream JSON data to the WiFiMon Analysis Server Set the FQDN of the WiFiMon Analysis Server ''' headers = {'content-type' : "application/json"} try: session = requests.Session() session.verify = False session.post(url = 'https://WAS_FQDN:443/wifimon/twamp/', data = json_data, headers = headers, timeout = 30) except: pass return None if __name__ == "__main__": # Define the number of the WiFiMon Hardware Probe PROBE_NO = "PROBE_NUMBER" # Define the FQDN of the TWAMP Server twamp_server = "TWAMP_SERVER_FQDN" # Perform twping against the TWAMP Server twping_results = perform_twping(twamp_server) # Parse twping results line_to_start = locate_twping_data(twping_results) json_data = parse_twping(twping_results, line_to_start, PROBE_NO) # Stream data to the WiFiMon Analysis Server stream_data(json_data)
The following values should be set:
- "PROBE_NO" (line 171) should match the number assigned to the testtools of the particular WiFiMon Hardware Probe (WHP), e.g. for the WHP assigned the number 1, the value should be "1". Assigning numbers to WHPs is possible by appropriately setting the testtool attribute included in the websites monitored by them. More information related to assigning number to WHPs is available in the WiFiMon Test Server installation guide.
- "WAS_FQDN" (line 164) should match the FQDN of the WiFiMon Analysis Server (WAS) responsible for processing the TWAMP measurement results of the WHP. The above code block assumes that the WAS uses https and port 443.
- "TWAMP_SERVER_FQDN" (line 173): Should be filled with the FQDN of the TWAMP Server.
Security Issues
We suggest that you take additional efforts to safeguard the security of your probes:
- Set the password for the "pi" user and the "root" user of the WiFiMon Hardware Probe.
- Disable auto-login to the WiFiMon Hardware Probe. Open the terminal and type "sudo raspi-config". Then, from the third line "Boot Options", select "B1. Desktop / CLI" and then "B3. Desktop".
- When connecting to your Wi-Fi network, your password will be stored as plaintext to the file "/etc/wpa_supplicant/wpa_supplicant.conf". Use the following commands to hash your ESSID and password:
set +o history wpa_passphrase YOUR_ESSID YOUR_PASSWORD set -o history
A "psk=....." line will be generated. Add this line in /etc/wpa_supplicant/wpa_supplicant.conf under your ESSID and delete the plaintext password.
- Default user "pi" comes with sudo privileges. You can remove them with the following commands from the "root" user:
delgroup pi sudo rm /etc/sudoers.d/010_pi-nopasswd
- Convert the privileges of the "/etc/wpa_supplicant/wpa_supplicant.conf" to "600".
- You may configure a firewall to further protect your device.