...
- A Raspberry Pi 3 Model B+ or a newer model
- A micro SD card with at least 16GB
- WiFiMon Raspberry Pi operating system image (Installation option 1) or Raspberry Pi with installed Raspberry Pi OS (Installation option 2)
Setting up the WHP
There are two options for the WHP installation:
- Installation and configuration from the prepared WiFiMon WHP image (Installation option 1)
- Installation and configuration on the Raspberry Pi with already installed Raspberry Pi OS (Stretch or later) (Installation option 2)
Installation and configuration
...
Anchor Option 1 Option 1
Option 1 | |
Option 1 |
The following steps apply for both installation options. WiFiMon users who will use the prepared WHP image (installation option 1) should simply edit the crontab and wireless.py files as discussed in the following. WiFiMon users who will not use the prepared WIFiMon WHP image (installation option 2) should follow the steps 2 up to 4.
Step 1: Write the image to the micro SD card
Follow the instructions at the official Raspberry Pi site. Skip the "Download the image" step and use the WiFiMon Raspberry Pi operating system image instead (download size is approx. 8 GB).
WiFiMon Raspberry Pi image given above is a custom version of Raspbian Stretch Raspberry Pi OS (Buster) with desktop, with the default Raspberry Pi credentials (user: pi, password: raspberry).
We advise the user to always secure Raspberry Pi by changing the default password.
Step 2: Start the Raspberry Pi
Follow the simple steps below:
...
You should see a red light on the Raspberry Pi and raspberries on the monitor. The WiFiMon Hardware Probe will boot up into a graphical desktop.
Step 3: Configure the
...
Raspberry Pi Anchor Step3 Step3
Step3 | |
Step3 |
Secure the Raspberry Pi by changing the default password. Optionally, you may enable SSH to access the command line of a Raspberry Pi remotely or setup remote desktop. Next, you have to connect to the wireless network you want to measure.
...
You should put the URL or IP address of the WTS in which the NetTest, speedtest and boomerang JS scripts are injected. Details about the configuration of the WiFiMon testtools are included in the WiFiMon Test Server (WTS) installation documentation. Following the assumptions/notations of the WTS guide, examples of the URLs for NetTest, speedtest and boomerang respectively are (i) https://WTS_FQDN/wifimon/measurements/nettest.html, (ii) https://WTS_FQDN/wifimon/measurements/speedworker.html and (iii) https://WTS_FQDN/wifimon/measurements/boomerang.html.
Line 5 of the crontab is related to the streaming of wireless network interface metrics to the WiFiMon Analysis Server (WAS). Optionally, the intervals of the WHP measurements could be altered by appropriately configuring the crontab so that measurement are more or less frequent. The configuration of the crontab config given above sets up 10-minute intervals between the measurements of each test tool in a way in which there are no overlapping measurements.
Step 4: Streaming Wireless Network Interface Metrics to the WiFiMon Analysis Server (WAS) Anchor Step4 Step4
Step4 | |
Step4 |
In /home/pi, you will find the Python script wireless.py. The contents of the script are the following:
...
User has to edit lines 31 and 38 according to the network configuration of the key WiFiMon components. In line 31, "WHP_NUMBER" should match the number assigned to the testtools of the particular WiFiMon Hardware Probe (WHP), e.g. for the WHP assigned the number 1, the value should be "1". Assigning numbers to WHPs is possible by appropriately setting the testtool attribute included in the websites monitored by them. More information related to assigning number to WHPs is available in the WiFiMon Test Server installation guide. In line 38, "WAS_FQDN" should match the FQDN of the WiFiMon Analysis Server (WAS) responsible for processing the wireless performance metrics of the WHP. The above code block assumes that the WAS uses https and port 8443. It is possible to use http in which case WAS listens on port 9000 instead of 8443.
That's all! At this point you may (optionally) unplug the keyboard, the mouse and the monitor and let the WHP measure the performance of your wireless network!
Security Issues
We suggest that you take additional efforts to safeguard the security of your probes:
- Set the password for the "pi" user and the "root" user of the WiFiMon Hardware Probe.
- Disable auto-login to the WiFiMon Hardware Probe. Open the terminal and type "sudo raspi-config". Then, from the third line "Boot Options", select "B1. Desktop / CLI" and then "B3. Desktop".
- When connecting to your Wi-Fi network, your password will be stored as plaintext to the file "/etc/wpa_supplicant/wpa_supplicant.conf". Use the following commands to hash your ESSID and password:
Code Block | ||
---|---|---|
| ||
set +o history
wpa_passphrase YOUR_ESSID YOUR_PASSWORD
set -o history |
A "psk=....." line will be generated. Add this line in /etc/wpa_supplicant/wpa_supplicant.conf under your ESSID and delete the plaintext password.
- Default user "pi" comes with sudo privileges. You can remove them with the following commands from the "root" user:
Code Block | ||
---|---|---|
| ||
delgroup pi sudo
rm /etc/sudoers.d/010_pi-nopasswd |
- Convert the privileges of the "/etc/wpa_supplicant/wpa_supplicant.conf" to "600".
- You may configure a firewall to further protect your device.