...
- A Raspberry Pi 3 Model B+ or a newer model
- A micro SD card with at least 16GB
- WiFiMon Raspberry Pi operating system image (Installation option 1) or Raspberry Pi with installed Raspberry Pi OS (Installation option 2)
...
Follow the instructions at the official Raspberry Pi site. Skip the "Download the image" step and use the WiFiMon Raspberry Pi operating system image instead (download size is approx. 3.5 GB).
WiFiMon Raspberry Pi image given above is a custom version of Raspberry Pi OS (Buster) with desktop, with the default Raspberry Pi credentials (user: pi, password: raspberry).
...
|
The WiFiMon Hardware Probe (WHP) performs performance tests towards the WiFiMon Test Server (WTS) in an automated manner. It uses crontab to schedule the tests. To do that, open the terminal (as user "pi") and enter the command: crontab -e. You will have to pick the text editor that you prefer. Then scroll to the bottom of the file and add the following code block (which you will modify as explained below):
...
In /home/pi, you will find the Python script wireless.py. The contents of the script are the following:
wireless.py
...
Code Block | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
#!/usr/bin/python3
import sys
import subprocess
import datetime
import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
import json
import pingparsing
def return_command_output(command):
proc = subprocess.Popen(command, stdout = subprocess.PIPE, shell = True)
(out, err) = proc.communicate()
output = out.rstrip('\n'.encode('utf8'))
return output
def get_mac(iface):
command = "cat /sys/class/net/" + str(iface) + "/address"
mac = return_command_output(command).decode('utf8')
mac = mac.replace(":", "-")
return mac
def find_wlan_iface_name():
command = "printf '%s\n' /sys/class/net/*/wireless | awk -F'/' '{print $5 }'"
wlan_iface_name = return_command_output(command)
return wlan_iface_name.decode('utf8')
def parse_iwconfig(iface):
bit_rate = return_command_output("sudo iwconfig " + iface + " | grep Bit | awk '{print $2}' | sed 's/Rate=//'").decode('utf8')
tx_power = return_command_output("sudo iwconfig " + iface + " | grep Bit | awk '{print $4}' | sed 's/Tx-Power=//'").decode('utf8')
link_quality = return_command_output("sudo iwconfig " + iface + " | grep Link | awk '{print $2}' | sed 's/Quality=//'").decode('utf8')
link_quality = link_quality.split("/")[0]
signal_level = return_command_output("sudo iwconfig " + iface + " | grep Link | awk '{print $4}' | sed 's/level=//'").decode('utf8')
accesspoint = return_command_output("sudo iwconfig " + iface + " | grep Mode | awk '{print $6}' | sed 's/Point: //'").decode('utf8')
accesspoint = accesspoint.replace(":", "-")
essid = return_command_output("sudo iwconfig " + iface + " | grep ESSID | awk '{print $4}' | sed 's/ESSID://'").decode('utf8')
essid = essid.replace("\"", "")
return bit_rate, tx_power, link_quality, signal_level, accesspoint, essid
def parse_iwlist(iface, accesspoint):
information = {}
command = "sudo iwlist " + iface + " scan | grep -E \"Cell|Frequency|Quality|ESSID\""
aps = return_command_output(command).decode("utf8")
aps = aps.split("\n")
cell_indices = list()
for index in range(0, len(aps)):
line_no_whitespace = ' '.join(aps[index].split())
parts = line_no_whitespace.split()
if parts[0] == "Cell":
cell_indices.append(index)
for index in cell_indices:
line0 = ' '.join(aps[index].split())
ap_mac = line0.split()[-1]
ap_mac = ap_mac.replace(":", "-")
information[ap_mac] = {}
line1 = ' '.join(aps[index + 1].split())
frequency = line1.split()[0].split(":")[1]
information[ap_mac]["frequency"] = str(frequency)
line2 = ' '.join(aps[index + 2].split())
parts = line2.split()
information[ap_mac]["drillTest"] = float(parts[2].split("=")[1])
line3 = ' '.join(aps[index + 3].split())
parts = line3.split(":")
information[ap_mac][str(parts[1].replace('"', ''))] = information[ap_mac]["drillTest"]
return information
def convert_info_to_json(accesspoint, essid, mac, bit_rate, tx_power, link_quality, signal_level, probe_no, information, location_name, test_device_location_description, nat_network, system_dictionary, number_of_users, pingparser_result):
overall_dictionary = {}
# values from ping received through pingparser github tool
overall_dictionary["wts"] = str(pingparser_result["destination"])
packet_transmit = int(float(pingparser_result["packet_transmit"]))
overall_dictionary["pingPacketTransmit"] = str(packet_transmit)
packet_receive = int(float(pingparser_result["packet_receive"]))
overall_dictionary["pingPacketReceive"] = str(packet_receive)
packet_loss_rate = int(float(pingparser_result["packet_loss_rate"]))
overall_dictionary["pingPacketLossRate"] = str(packet_loss_rate)
packet_loss_count = int(float(pingparser_result["packet_loss_count"]))
overall_dictionary["pingPacketLossCount"] = str(packet_loss_count)
try:
rtt_min = int(float(pingparser_result["rtt_min"]))
rtt_avg = int(float(pingparser_result["rtt_avg"]))
rtt_max = int(float(pingparser_result["rtt_max"]))
rtt_mdev = int(float(pingparser_result["rtt_mdev"]))
packet_duplicate_rate = int(float(pingparser_result["packet_duplicate_rate"]))
packet_duplicate_count = int(float(pingparser_result["packet_duplicate_count"]))
except:
# -1 indicates failure to reach the wts and calculate the above values
rtt_min = -1
rtt_avg = -1
rtt_max = -1
rtt_mdev = -1
packet_duplicate_rate = -1
packet_duplicate_count = -1
overall_dictionary["pingRttMin"] = str(rtt_min)
overall_dictionary["pingRttAvg"] = str(rtt_avg)
overall_dictionary["pingRttMax"] = str(rtt_max)
overall_dictionary["pingRttMdev"] = str(rtt_mdev)
overall_dictionary["pingPacketDuplicateRate"] = str(packet_duplicate_rate)
overall_dictionary["pingPacketDuplicateCount"] = str(packet_duplicate_count)
# values from iw* commands
overall_dictionary["macAddress"] = "\"" + str(mac) + "\""
overall_dictionary["accesspoint"] = "\"" + str(accesspoint) + "\""
overall_dictionary["essid"] = "\"" + str(essid) + "\""
bit_rate = int(float(bit_rate))
overall_dictionary["bitRate"] = str(bit_rate)
tx_power = int(float(tx_power))
overall_dictionary["txPower"] = str(tx_power)
link_quality = int(float(link_quality))
overall_dictionary["linkQuality"] = str(link_quality)
signal_level = int(float(signal_level))
overall_dictionary["signalLevel"] = str(signal_level)
overall_dictionary["probeNo"] = str(probe_no)
information = json.dumps(information)
overall_dictionary["monitor"] = information
# values defined by administrator
overall_dictionary["locationName"] = "\"" + str(location_name) + "\""
overall_dictionary["testDeviceLocationDescription"] = "\"" + str(test_device_location_description) + "\""
overall_dictionary["nat"] = "\"" + str(nat_network) + "\""
# values received through arp-scan command
overall_dictionary["numberOfUsers"] = "\"" + str(number_of_users) + "\""
system_dictionary = json.dumps(system_dictionary)
# values received from system commands (memory, cpu, disk)
overall_dictionary["system"] = system_dictionary
json_data = json.dumps(overall_dictionary)
return json_data
def processing_info():
command = '''echo "$(iostat | head -1 | awk '{print $1}')"'''
operating_system = return_command_output(command).decode('utf8')
command = '''echo "$(iostat | head -1 | awk '{print $2}')"'''
driver_version = return_command_output(command).decode('utf8')
command = '''echo "$(iostat | head -1 | awk '{print $6}' | cut -c 2-)"'''
total_cores = return_command_output(command).decode('utf8')
command = '''echo "$(vmstat 1 2|tail -1|awk '{print $15}')"'''
cpu_utilization = 100 - int(return_command_output(command).decode('utf8'))
command = '''echo "$(vmstat --stats | grep 'total memory' | tail -1 | awk '{print $1}')"'''
total_memory = return_command_output(command).decode('utf8')
command = '''echo "$(vmstat --stats | grep 'used memory' | tail -1 | awk '{print $1}')"'''
used_memory = return_command_output(command).decode('utf8')
command = '''echo "$(df -h / | tail -1 | awk '{print $2}')"'''
total_disk_size = return_command_output(command).decode('utf8')
command = '''echo "$(df -h / | tail -1 | awk '{print $3}')"'''
used_disk_size = return_command_output(command).decode('utf8')
system_dictionary = {}
system_dictionary["operatingSystem"] = str(operating_system)
system_dictionary["driverVersion"] = str(driver_version)
system_dictionary["totalCores"] = str(total_cores)
system_dictionary["cpuUtilization"] = str(cpu_utilization)
system_dictionary["totalMemory"] = str(total_memory)
system_dictionary["usedMemory"] = str(used_memory)
system_dictionary["totalDiskSize"] = str(total_disk_size)
system_dictionary["usedDiskSize"] = str(used_disk_size)
return system_dictionary
def stream_data(data):
headers = {'content-type':"application/json"}
try:
session = requests.Session()
session.verify = False
session.post(url='https://INSERT_WAS_FQDN:443/wifimon/probes/', data=data, headers=headers, timeout=30)
except:
pass
def parse_arpscan(result):
lines = result.split("\n")
lines.pop(0)
lines.pop(0)
space_line = lines.index('')
return space_line
def arpscanner():
command = "sudo arp-scan --localnet"
arpscan_result = return_command_output(command).decode('utf8')
number_of_users = parse_arpscan(arpscan_result)
return number_of_users
def pingparser(wts):
# See: https://github.com/thombashi/pingparsing
ping_parser = pingparsing.PingParsing()
transmitter = pingparsing.PingTransmitter()
transmitter.destination = str(wts)
transmitter.count = 3
result = transmitter.ping()
result_json = json.dumps(ping_parser.parse(result).as_dict(), indent=4)
result_dict = json.loads(result_json)
return result_dict
def set_location_information():
location_name = "INSERT_LOCATION_NAME"
test_device_location_description = "INSERT_TEST_DEVICE_LOCATION_DESCRIPTION"
nat_network = "INSERT_True_OR_False"
return location_name, test_device_location_description, nat_network
def general_info():
system_dictionary = processing_info()
location_name, test_device_location_description, nat_network = set_location_information()
iface_name = find_wlan_iface_name()
mac = get_mac(iface_name)
bit_rate, tx_power, link_quality, signal_level, accesspoint, essid = parse_iwconfig(iface_name)
information = parse_iwlist(iface_name, accesspoint)
probe_no = "INSERT_PROBE_NUMBER"
wts = "INSERT_WTS_FQDN"
number_of_users = arpscanner()
pingparser_result = pingparser(wts)
json_data = convert_info_to_json(accesspoint, essid, mac, bit_rate, tx_power, link_quality, signal_level, probe_no, information, location_name, test_device_location_description, nat_network, system_dictionary, number_of_users, pingparser_result)
stream_data(json_data)
if __name__ == "__main__":
general_info() |
The following values should be set:
- "probe_no" (line 145207) should match the number assigned to the testtools of the particular WiFiMon Hardware Probe (WHP), e.g. for the WHP assigned the number 1, the value should be "1". Assigning numbers to WHPs is possible by appropriately setting the testtool attribute included in the websites monitored by them. More information related to assigning number to WHPs is available in the WiFiMon Test Server installation guide.
- "WAS_FQDN" (line 128166) should match the FQDN of the WiFiMon Analysis Server (WAS) responsible for processing the wireless performance metrics of the WHP. The above code block assumes that the WAS uses https and port 443.
- "WTS_FQDN" (line 208) should match the FQDN of the WiFiMon Test Server (WTS) or the IP of the WTS.
- LInes 133 195 to 135 197 can be filled with more information regarding the location of the WHP.
...
Code Block | ||||||||
---|---|---|---|---|---|---|---|---|
| ||||||||
''' Sample twping output (MIND THE NAMING OF THE LINES) line 0: --- twping statistics from [192.168.1.1]:9706 to [192.168.1.2]:19642 --- line 1: SID: c0a80102e5e36a42b8a73f74cec8780e line 2: first: 2022-03-21T23:18:58.819 line 3: last: 2022-03-21T23:19:10.456 line 4: 100 sent, 0 lost (0.000%), 0 send duplicates, 0 reflect duplicates line 5: round-trip time min/median/max = 0.109/0.3/1.07 ms, (err=3.8 ms) line 6: send time min/median/max = 936/936/936 ms, (err=1.9 ms) line 7: reflect time min/median/max = -936/-936/-935 ms, (err=1.9 ms) line 8: reflector processing time min/max = 0.00191/0.021 ms line 9: two-way jitter = 0.1 ms (P95-P50) line 10: send jitter = 0.1 ms (P95-P50) line 11: reflect jitter = 0 ms (P95-P50) line 12: send hops = 0 (consistently) line 13:reflect hops = 0 (consistently) ''' import subprocess import json import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) def return_command_output(command): ''' Execute a command and return its output ''' proc = subprocess.Popen(command, stdout = subprocess.PIPE, shell = True) (out, err) = proc.communicate() output = out.rstrip('\n'.encode('utf8')) return output def perform_twping(twamp_server_ip): ''' Perform the twping command and retrieve its output in milliseconds ''' command = "twping " + str(twamp_server_ip) + " -n m" twping_results = return_command_output(command).decode('utf8') return twping_results def locate_twping_data(twping_output): ''' Find the line at which the important part of the twping output starts ''' twping_output_parts = twping_output.split('\n') line_to_start = 0 for line in twping_output_parts: initial_three_chars = line[0:3] if initial_three_chars == "---": break line_to_start += 1 return line_to_start # Parse lines one by one. Look at the top for the numbering of the lines def parse_line1(line1): parts = line1.split("\t") sid = parts[1] return sid def parse_line4(line4): parts = line4.split(" ") sent, lost, send_dups, reflect_dups = parts[0], parts[2], parts[5], parts[8] return sent, lost, send_dups, reflect_dups def parse_times(line): parts = line.split(" ") min_median_max = parts[4].split("/") minimum, median, maximum = min_median_max[0], min_median_max[1], min_median_max[2] err = parts[6].split("=")[1] return minimum, median, maximum, err def parse_line8(line): parts = line.split(" ") time_unit = parts[-1] minimum = parts[-2].split("/")[0] maximum = parts[-2].split("/")[1] return minimum, maximum def parse_jitter(line): parts = line.split(" ") value = parts[3] characterization = parts[5][1:-1] return value, characterization def parse_hops(line): parts = line.split(" ") value = parts[3] characterization = parts[4][1:-1] return value, characterization def parse_ntpstat_line_0(line): line_parts = line.split(" ") ntp_server = line_parts[4] ntp_server = ntp_server[1:-1] stratum = line_parts = line_parts[7] return ntp_server, stratum def parse_ntpstat_line_1(line): line_parts = line.split(" ") while line_parts[0] == "": line_parts = line_parts[1:] value = line_parts[4] unit = line_parts[5] time_correct = str(value) + " " + str(unit) return time_correct def parse_ntpstat(): command = "ntpstat" ntpstat_output = return_command_output(command).decode('utf8') ntpstat_output_lines = ntpstat_output.split('\n') line_0 = ntpstat_output_lines[0] ntp_server, stratum = parse_ntpstat_line_0(line_0) line_1 = ntpstat_output_lines[1] time_correct = parse_ntpstat_line_1(line_1) return (ntp_server, stratum, time_correct) def parse_ntpq_starred_line(line): line_parts = line.split(" ") try: while True: line_parts.remove('') except ValueError: pass return line_parts def parse_ntpq(): command = "ntpq -pn" ntpq_output = return_command_output(command).decode('utf8') ntpq_output_lines = ntpq_output.split('\n') for line in ntpq_output_lines: if line[0] == "*": ntpq_result = parse_ntpq_starred_line(line[1:]) return ntpq_result def form_json(probe_number, twamp_server, sid, sent, lost, send_dups, reflect_dups, min_rtt, median_rtt, max_rtt, err_rtt, min_send, median_send, max_send, err_send, min_reflect, median_reflect, max_reflect, err_reflect, min_reflector_processing_time, max_reflector_processing_time, two_way_jitter_value, two_way_jitter_char, send_jitter_value, send_jitter_char, reflect_jitter_value, reflect_jitter_char, send_hops_value, send_hops_char, reflect_hops_value, reflect_hops_char, ntp_server_ntpstat, stratum, time_correct, ntp_server_ntpq, delay_ntpq, offset_ntpq, jitter_ntpq): ''' Create a json object with the parsed values. Values are first stored in a dictionary. ''' overall_dictionary = {} # TWAMP-related data overall_dictionary["probeNumber"] = probe_number overall_dictionary["twampServer"] = twamp_server overall_dictionary["sid"] = sid overall_dictionary["sent"] = sent overall_dictionary["lost"] = lost overall_dictionary["sendDups"] = send_dups overall_dictionary["reflectDups"] = reflect_dups overall_dictionary["minRtt"] = min_rtt overall_dictionary["medianRtt"] = median_rtt overall_dictionary["maxRtt"] = max_rtt overall_dictionary["errRtt"] = err_rtt overall_dictionary["minSend"] = min_send overall_dictionary["medianSend"] = median_send overall_dictionary["maxSend"] = max_send overall_dictionary["errSend"] = err_send overall_dictionary["minReflect"] = min_reflect overall_dictionary["medianReflect"] = median_reflect overall_dictionary["maxReflect"] = max_reflect overall_dictionary["errReflect"] = err_reflect overall_dictionary["minReflectorProcessingTime"] = min_reflector_processing_time overall_dictionary["maxReflectorProcessingTime"] = max_reflector_processing_time overall_dictionary["twoWayJitterValue"] = two_way_jitter_value overall_dictionary["twoWayJitterChar"] = two_way_jitter_char overall_dictionary["sendJitterValue"] = send_jitter_value overall_dictionary["sendJitterChar"] = send_jitter_char overall_dictionary["reflectJitterValue"] = reflect_jitter_value overall_dictionary["reflectJitterChar"] = reflect_jitter_char overall_dictionary["sendHopsValue"] = send_hops_value overall_dictionary["sendHopsChar"] = send_hops_char overall_dictionary["reflectHopsValue"] = reflect_hops_value overall_dictionary["reflectHopsChar"] = reflect_hops_char # NTP-related data overall_dictionary["ntpServerNtpstat"] = "\"" + str(ntp_server_ntpstat) + "\"" overall_dictionary["stratum"] = stratum overall_dictionary["timeCorrect"] = time_correct overall_dictionary["ntpServerNtpq"] = "\"" + str(ntp_server_ntpq) + "\"" overall_dictionary["delayNtpq"] = delay_ntpq overall_dictionary["offsetNtpq"] = offset_ntpq overall_dictionary["jitterNtpq"] = jitter_ntpq json_data = json.dumps(overall_dictionary) return json_data def parse_twping_and_ntp(twping_output, line_to_start, probe_number): ''' Parse twping output line by line ''' twping_output_parts = twping_output.split('\n') sid = parse_line1(twping_output_parts[line_to_start + 1]) sent, lost, send_dups, reflect_dups = parse_line4(twping_output_parts[line_to_start + 4]) min_rtt, median_rtt, max_rtt, err_rtt = parse_times(twping_output_parts[line_to_start + 5]) min_send, median_send, max_send, err_send = parse_times(twping_output_parts[line_to_start + 6]) min_reflect, median_reflect, max_reflect, err_reflect = parse_times(twping_output_parts[line_to_start + 7]) min_reflector_processing_time, max_reflector_processing_time = parse_line8(twping_output_parts[line_to_start +8]) two_way_jitter_value, two_way_jitter_char = parse_jitter(twping_output_parts[line_to_start + 9]) send_jitter_value, send_jitter_char = parse_jitter(twping_output_parts[line_to_start + 10]) reflect_jitter_value, reflect_jitter_char = parse_jitter(twping_output_parts[line_to_start + 11]) send_hops_value, send_hops_char = parse_hops(twping_output_parts[line_to_start + 12]) reflect_hops_value, reflect_hops_char = parse_hops(twping_output_parts[line_to_start + 13]) # parse ntpq and ntpstat commands ntp_server_ntpstat, stratum, time_correct = parse_ntpstat() ntpq_result = parse_ntpq() ntp_server_ntpq = ntpq_result[0] delay_ntpq = ntpq_result[7] offset_ntpq = ntpq_result[8] jitter_ntpq = ntpq_result[9] # form json data json_data = form_json(probe_number, twamp_server, sid, sent, lost, send_dups, reflect_dups, min_rtt, median_rtt, max_rtt, err_rtt, min_send, median_send, max_send, err_send, min_reflect, median_reflect, max_reflect, err_reflect, min_reflector_processing_time, max_reflector_processing_time, two_way_jitter_value, two_way_jitter_char, send_jitter_value, send_jitter_char, reflect_jitter_value, reflect_jitter_char, send_hops_value, send_hops_char, reflect_hops_value, reflect_hops_char, ntp_server_ntpstat, stratum, time_correct, ntp_server_ntpq, delay_ntpq, offset_ntpq, jitter_ntpq) return json_data def stream_data(json_data): ''' Stream JSON data to the WiFiMon Analysis Server Set the FQDN of the WiFiMon Analysis Server ''' headers = {'content-type' : "application/json"} try: session = requests.Session() session.verify = False session.post(url = 'https://INSERT_WAS_FQDN_OR_IP:443/wifimon/twamp/', data = json_data, headers = headers, timeout = 30) except: pass return None if __name__ == "__main__": # Define the number of the WiFiMon Hardware Probe PROBE_NO = "INSERT_PROBE_NUMBER" # Define the IP address of the TWAMP Server twamp_server = "INSERT_TWAMP_SERVER_FQDN_OR_IP" twping_results = perform_twping(twamp_server) line_to_start = locate_twping_data(twping_results) json_data = parse_twping_and_ntp(twping_results, line_to_start, PROBE_NO) stream_data(json_data) |
The following values should be set:
- "PROBE_NO" (line 171242) should match the number assigned to the testtools of the particular WiFiMon Hardware Probe (WHP), e.g. for the WHP assigned the number 1, the value should be "1". Assigning numbers to WHPs is possible by appropriately setting the testtool attribute included in the websites monitored by them. More information related to assigning number to WHPs is available in the WiFiMon Test Server installation guide.
- "WAS_FQDN_OR_IP" (line 164235) should match the FQDN or the IP address of the WiFiMon Analysis Server (WAS) responsible for processing the TWAMP measurement results of the WHP. The above code block assumes that the WAS uses HTTPS and port 443.
- "TWAMP_SERVER_FQDN_OR_IP" (line 173246): Should be filled with the FQDN or the IP address of the TWAMP Server.
For the above script to work, you need to install perfsonar-tools from the perfSONAR repository. The installation process is detail in the following link. In the sequel we summarize the necessary installation steps:
|
Moreover, you also need to install "ntpstat" via the following commands:
sudo apt update |
Security Issues
We suggest that you take additional efforts to safeguard the security of your probes:
...