
perfSONAR is developed by a partnership of

Contain Yourself!
Running perfSONAR in Containers

©2024 The perfSONAR Project and its Contributors ・ Licensed CC BY-SA 4.0 ・ https://www.perfsonar.net

Mark Feit ・ Internet2 / perfSONAR Development Team ・ mfeit@internet2.edu

4th Annual European perfSONAR User Workshop

mailto:mfeit@internet2.edu

2

A Light Introduction to Virtualization
and Containment

More Computers!

• Computing used to be expensive. Really expensive.
• Time was sometimes rented – What’s old is new again.

• Users like having their own sandbox.
• Others don’t affect them
• They don’t affect others

• The Unix philosophy: Do one thing, do it well

3

System-Level Virtualization

• Serial batch was effectively-isolated.

• Give a tenant (user) the experience of having a
computer all to themselves.

• Run multiple operating systems (same or different)
at once.

4

Virtualization Milestones

IBM Compatible Time Sharing System 1961
Essentially an operating system

IBM CP-40 1966
Multiple Operating Systems
Evolved into the VM/370 family

Virtualization on Microcomputers 2000s

5

Containers

• Group of processes that run in a set of compartmented
spaces on a system:

File system User IDs
Process Control Group (cgroup) and IDs Network
Inter-Process Communication Time
Unix Timesharing (host name/domain)

• Same kernel as the root namespaces
• Enough to look like a separate host without the overhead
6

Container Milestones

Unix chroot 1982
FreeBSD Jail 2000
Solaris Zones 2005
Linux Containers (LXC) 2008
Docker 2013

7

8

perfSONAR in Containers

Why Run perfSONAR in a Container?

• Easy to install / rebuild / move elsewhere / delete

• Multiple, fully-isolated perfSONAR nodes on a single system
• Solves resource management problems

• Automation

• Some security benefits

• Decouples perfSONAR’s OS choices from yours (Mostly)

9

Why Not Run perfSONAR in a Container?

• If using more-exotic networking features (e.g., TCP
congestion control algorithms), the host’s kernel
must support them.

• Occasional IPv6 packet loss

• Not always necessary

10

My Preferred System Architecture

perfSONAR
Container

macvlan
Network Driver

Measurement
NIC

Management
NIC

Docker or Podman

Linux

Other Applications

The Container / Driver / NIC pattern may be repeated.

The macvlan Network Driver

• Binds a host interface directly into a container

• Bypasses additional container networking code

• Negligible performance difference vs. bare
metal

• No address assigned on the host
• Helps prevent external access to the host OS

12

Big MACVLAN

There Are Other Ways

• Use the default bridge network driver and expose
ports

• Better when…
• There’s only one interface
• Not sharing the host for other applications

13

perfSONAR on Internet2’s Backbone

• 49+ PoPs

• Up to four perfSONAR containers per PoP
• Public
• Internal-Use
• Special uses as directed by Internet2 Network

Engineering

14

PoP Container Architecture at Internet2

Public perfSONAR
Container

macvlan
Network Driver

100 Gb/s NIC
Port 1Management

NIC

Podman

Alma Linux 9

Internal-Use perfSONAR
Container

macvlan
Network Driver

100 Gb/s NIC
Port 2

Special-Use perfSONAR
Container 1

macvlan
Network Driver

10 Gb/s NIC
Port 1

Special-Use perfSONAR
Container 2

macvlan
Network Driver

10 Gb/s NIC
Port 2

16

Deployment

Pick Your Environment

• Docker
• Podman

• Nothing shown will be Podman-specific

17

perfSONAR’s Docker Image

docker.io/perfsonar/testpoint

docker.io/perfsonar/testpoint:systemd

• Either one works.

• 5.0.x – Based on CentOS 7
• 5.1.x – Based on Ubuntu 22

18

perfSONAR vs. the Docker Orthodoxy

• Docker favors composition, i.e., one service per
container.

• Entire perfSONAR testpoint is in one container.
• pScheduler
• pSConfig
• LS Registration Daemon
• Underlying services (PostgreSQL, {O,T}WAMP, etc.)

19

A Word About Control Groups (Cgroups)

• Linux construct that allows a group of processes to be resource-
constrained (CPU, memory, I/O, processes).

• v1 – CentOS 7, Alma/Rocky 8, Ubuntu 20
• Containers must be run privileged --privileged
• Setting swappiness is supported --memory-swappiness=N

• v2 – Alma/Rocky 9, Debian11+, Ubuntu 22+
• Must share host’s Cgroup volume into the container if contained system is v2

--volume /sys/fs/cgroup:/sys/fs/cgroup:ro

• v2 systems have /sys/fs/cgroup/cgroup.controllers

20

Managing Resources

• Processor Cores
• How many?
• Which ones? (Bus proximity to NIC)

• Memory
• How much?
• How much swap? (Usually the same as physical RAM)

• Network Interface Card

21

Customizations (Dockerfile)
FROM perfsonar/testpoint

pSConfig Mesh Configuration
RUN psconfig remote add https://mesh.example.edu/mesh.json

pScheduler Limit Configuration
COPY limits.conf /etc/pscheduler/limits.conf
RUN chown root.pscheduler /etc/pscheduler/limits.conf

RUN chmod 444 /etc/pscheduler/limits.conf

LS Registration Daemon Configuration (Maybe)
COPY lsregistrationdaemon.conf /etc/perfsonar/lsregistrationdaemon.conf

RUN chown root.perfsonar /etc/perfsonar/lsregistrationdaemon.conf
RUN chmod 444 /etc/perfsonar/lsregistrationdaemon.conf

22

Creating a Docker Network

docker create network

--driver=macvlan

--opt parent=eno3

--subnet=192.0.2.0/24

--gateway=192.0.2.1

--ipv6 Optional: Enable IPv6
--subnet=2001:db8::/32 Optional: IPv6 Subnet
--gateway=2001:db8::1 Optional: IPv6 Gateway
my-perfsonar-net Name of Network

23

Running the Container

docker run

--detach

--restart=unless-stopped

--name=my-perfsonar

--label='My perfSONAR'

--hostname=perfsonar.foo.org

--cpuset-cpus=1,3,5,7

--memory=16gb

--memory-swap=16gb

--memory-swappiness=0

24

--network=my-perfsonar-net

--ip=192.0.2.2

--ip6=2001:db8::2

CONTAINER_IMAGE

Pitfall: Small IPv4 Networks

• Small IPv4 networks (/31, /32) can cause
difficulties.

• Docker and Podman understand them

• Modules for some supporting programs do not
• Ansible
• Salt Stack

25

Kubernetes?

• Requires tight control over network
interfaces and addressing.

• Does not support the macvlan
network driver or using existing
Docker networks.

• Placement of the container can be
uncertain.

• Directing traffic with load balancers
will distort measurements.

26

27

Question and answer icon by iconosphere from The Noun Project

Questions
and

Answers

mfeit@internet2.edu

