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Introduction

Internet from space is becoming a viable reality

SpaceX, Amazon, Telesat are/will be deploying low earth orbit

(LEO) satellite constellations
« ...competing with/complementing terrestrial networks
1000s of satellites in multiple orbital shells and planes per shell

Inter-satellite and ground station to satellite links
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LEO Satellite Deployments

shell h (km) Orbits Sats/orbit i
S1 550 72 22 53°
S2 1,110 32 50 53.8°
Starlink  S3 1,130 8 50 74°
S4 1,275 5 75 81°
S5 1,325 6 75 70°
K1 630 34 34 51.9°
Kuiper K2 610 36 36 42°
K3 590 28 28 33°
T1 1,015 27 13 98.98°
Telesat 1,325 40 33 50.88°

from S. Kassing, et al., Exploring the "Internet from space" with Hypatia, in Proc of IMC '20
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Starlink Deployment

https://satellitemap.space
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Starlink Deployment
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[LEO Satellite Network

Characteristics

« Aggregate bandwidth in the order of hundreds of Tbhps

comparable to today’s aggregate fibre capacity
« Path multiplicity

e Sub-10ms round-trip time between Earth and first-hop

satellite

« Low end-to-end latency - can be smaller than best theoretical

fibre path can support
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Network Dynamics

« Large mesh-networks - deterministic mobility
e One orbit per ~100 minutes
« GS-satellite links change

« Shortest paths (latency-wise) change constantly even

when core is ISL only
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Network Dynamics

rtt: 0.02181 s
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Challenges in Data Transport

Non-congestive latency variation

Multiple paths that change over time — packet reordering

Hotspots (shortest-path routing on mesh networks)

Fluctuating bandwidth

US

UNIVERSITY
OF SUSSEX



Simulation Framework

A. Valentine and G. Parisis, Developing and experimenting with LEO satellite constellations
in OMNeT++, In Proc. of the 8th OMNeT++ Community Summit Conference, 2021

OMNeT++/INET — widely used packet-level simulator
Open Source Satellite Simulator - OS3 — accurate satellite mobility
Models for satellite network nodes, ISL connectivity

Routing
» extended the IP layer model to use IP addresses as satellite identifiers

» shortest-path calculation using Dijkstra’s algorithm

2D and 3D visualisations (using OpenSceneGraph and osgEarth)

source code: https://github.com/Avian688/leosatellites
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https://github.com/Avian688/leosatellites

Simulation Framework

A. Valentine and G. Parisis, Developing and experimenting with LEO satellite constellations
in OMNeT++, In Proc. of the 8th OMNeT++ Community Summit Conference, 2021

source code: https://github.com/Avian688/leosatellites
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https://github.com/Avian688/leosatellites

Accuracy and Scalability

Round Trip Times for different frequencies of mobility and SP calculation
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(a) 1 Second Granularity - (b) 5 Second Granularity - (c) 10 Second Granularity - (d) 15 Second Granularity
(Elapsed Real Time: 15m (Elapsed Real Time: 6m (Elapsed Real Time: 4m (Elapsed Real Time: 3m
55s) 26s) 18s) 55s)
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Accuracy and Scalability

Execution time for different topology sizes and IP routing configurators
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Non-Congestive Latency Variation

London - New York

80
(T
z 60,1
' PR TN n
; 50 NI RREEEECC N
3 404
30 —— Inter-Satellite Links —— Ground Relays Only, 6 Planes
m — Ground Relays Only, 24 Planes == Current Internet
—— Ground Relays Only, 12 Planes = Great Circle Fiber
20 I 1 1 | |
0 20 40 60 80 100 120

Elapsed Time (minutes)

US

UNIVERSITY
OF SUSSEX



Non-Congestive Latency Variation

Seattle - Miami
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Loss- and Delay-based Data

congestion window size round trip time
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Kuiper constellation - shell K1, 1156 satellites, 630km altitude, 34 orbital planes,
34 satellites per plane, 51.9°inclination, 10Mbps link speed, 100 packet buffers
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Loss- and Delay-based Data

Transport

Duplicate acknowledgements
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Receilver-Driven Data Transport

« Inspired by data centre network research (NDP, SCDP)

« Sender pushes initial window of packets --> receiver pulls

packets upon receiving initial window
« Pull requests are paced

« Packets are sprayed over k-edge-disjoint paths
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Receilver-Driven Data Transport
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Congestion Control

« DC approaches do not need/support congestion control
 assume specific topology/pace based on incoming link capacity)

* not appropriate for a LEO satellite network

S Varying Hop Goodput
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Congestion Control
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Congestion Control
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Current Work

« In-network signals for efficient delay-based congestion control
« RaptorQ codes for multicast and multisource communication

* Reinforcement Learning for congestion control in receiver-

driven data transport
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