AdaDoQ: Adaptive DNSSEC

Yehuda Afek Tel-Aviv University

Anat Bremler-Barr Reichman University

Daniel Dubnikov Tel-Aviv University

NXDomain Attack RANDOM DNS Request Flood

Resolvers

Rxy1xhggsgVCER.sony.com

XVBY\$&HGDRxy2.sony.com

FJH*^DHGAKRxy3.sony.com

RxUYQVMNLKAy4.sony.com

With DNSSEC

	Max Queries Per Second
Plain DNS	23,524
DNSSEC: NSEC	9,510
DNSSEC: NSEC3	8,989

fake.example.com ??

NX-DOMAIN

Empty cache

Empty

cache

fake.example.com Recursive

Resolver

Under NXDomain attack

Motivation

- DNSSEC is important
- DNS with DNSSEC does not scale, specifically,
 - → Vulnerable to NXDomain flood attacks

Goa

- 1. To measure DNSSEC scalability relative to Plain DNS
- Develop a method for <resolver ← → authoritative> collaboration that is
 (a) Scalable, (b) as secure as DNSSEC, and (c) introduces no new
 vulnerabilities.
 - a. Provides the same security level as DNSSEC, and
 - b. Provides performances close to that of Plain-DNS, and
 - c. Does not enable new vulnerabilities.

Conclusions

- DNSSEC degrades DNS performance
 - Make NXDOMAIN attacks worse (DDoS amplification)
- AdaDoQ Hybrid Solution
 - Light and fast connections
 - One time encryption overheads
 - Close to Plain DNS throughput
 - No Security Compromises
 - No Zone Walking
 - No Scalability Issues

Questions?