

RaQSaC: RaptorQ-based data transport for low earth orbit Satellite Constellations

George Parisis: G.Parisis@sussex.ac.uk

Aiden Valentine: A.Valentine@sussex.ac.uk

Introduction

Currently over 1800 Low-Earth Orbit (LEO)
satellites orbiting the earth which are all part of
SpaceX's vast plan for global high-speed internet
access.

Features Include:

- Interconnected dynamic mesh of thousands of satellites
- Substantial Latency reductions in comparison to the best fibre available today
- Aggregate capacity expected to reach multiple Tbps
- Average Round-Trip-Time (RTT) in a sub-10ms range between a the first satellite and Earth.

SpaceX Current Authorization					
Orbital Planes	72	72	36	6	4
Satellites per plane	22	22	20	58	43
Altitude	$550~\mathrm{km}$	$540~\mathrm{km}$	570 km	560 km	$560~\mathrm{km}$
Inclination	53°	53.2°	70°	97.6°	97.6°

Project Goal

- Take an exploratory approach to devising data transport protocols with appropriate congestion control algorithms for LEO satellite constellations
 - Understand the latency characteristics of LEO constellations along with the potential of inter-packet latency variation.
 - Explore design characteristics of a novel receiver-driven data transport, driven by our observations.

LEO Satellite Constellation Simulation Framework

We developed a LEO satellite simulation framework, allowing us to model existing and future satellite network constellations

Implemented within the OMNeT++ simulation library and framework

<u>Purpose</u>

- Drive the design exploration
- To test our protocol on realistic satellite network deployments

OMNeT++ Community Summit 2021 Paper: https://summit.omnetpp.org/2021/assets/pdf/OMNeT 2021 paper 6.pdf

LEO Satellite Constellation Framework: https://github.com/Avian688/leosatellites

Experimentation

To understand fully the characteristics of these networks, we did thorough experimentation using the simulation model.

Initial focuses:

- Latency Variation
- Inter-packet Latency (Jitter)

London – New York

Toronto – Miami

Challenges

Latency Variation

• Multiple paths that change over time.

Fluctuating bandwidth.

Hotspots

RaptorQ

We integrate RaptorQ coding into the core of data transport

- Systematic Code
- Spray symbols (not per-flow)
- Code is rateless (endless supply)
- Ordering is not important
- Zero retransmissions

How does RaptorQ address the challenges?

Latency Variation – Immune to reordering

 Multiple paths that change over time – Source and Repair symbols can be sprayed across all paths.

 Fluctuating bandwidth – Losses are less important due to no need to retransmit a lost symbol.

Receiver – Driven Approach

Receivers manage the rate of data being sent to them by senders.

We draw inspiration from datacentre data transport protocols [1, 2]

- Packet spraying
- Pull-based data transport with packet trimming.

- [1] Handley et al. Re-architecting datacenter networks and stacks for low latency and high performance. SIGCOMM '17.
- [2] Montazeri et al. Homa: a receiver-driven low-latency transport protocol using network priorities. SIGCOMM '18.

Receiver-Driven Approach Experiments

Manhattan Topology

Challenges

Latency Variation – Delay-Based congestion control algorithms will constantly adjust the sending rate, causing severe under-utilisation or congestion. Motivates the need of a non-delay congestion control.

Multiple paths that change over time – End-to-end shortest paths change every few seconds.

Hotspots – Shortest-path routing on mesh networks is susceptible to creating hotspots. Packet spraying and pull-based data transport can easily accommodate alternate routing strategies (such as *k-shortest-path*)

Congestion Control

We implemented an additive-increase multiplicative decrease (AIMD) scheme on top of the receiver-driven approach.

- Slow Start Phase
- Congestion Avoidance phase

We use trimmed headers to infer that there is congestion in the network!

Current Work

 We are evaluating the receiver-driven approach with congestion control further, including testing the protocol on large-scale moving satellites constellations.

- We are also evaluate one-to-many and many-to-one modes of the RaptorQ receiver-driven data transport.
- Lastly, we are evaluating alternate routing approaches, e.g. kshortest-path