PYFF Optimizations

GEANT GN4-3 WP5 T2 Incubator topic Cycle lll, 2020

Report by Team Alpha

Introduction

pyFF is widely used in our community to provide Discovery and Metadata
Query services. This incubator activity investigated whether any
significant memory optimizations can be made in pyFF.

When processing the eduGAIN metadata, pyFF memory usage balloons to the
gigabytes, thereby inflicting some extra cost when running in procured
VM-s 1like AWS. The startup/restart process speed, and service behavior
while being started/restarted may also be improved. In particular, the
service should never throw 5xx errors while in a normal startup/shutdown
process.

The goal of this project is to optimize pyFF memory consumption and
(re-)start behavior.

For the memory consumption, the underlying XML processing library may be
swapped, or the memory-intensive part of the processing may be done on a
short-lived <cheap VM and the resulting in-memory representation
serialized, transferred to the production instances and de-serialized.

For the in-(re)start behavior it must be established what is the right way
of configuring pyFF so that it won’'t take queries while its internal
database is still incomplete.

Experiments done

e Memory consumption charts

® guppy

e top with 1s refresh rate

e Externalized XML Processing

e SAX parsing

e visualization of the memory structure
e GC debug mode

e Meeting with Leif

Memory profiling

This is the bare import and code usage of using heapy to print heap
information while running python code.

https://pkgcore.readthedocs.io/en/latest/dev-notes/heapy.html
from guppy import hpy

import code

hp=hpy ()

reset the heap counters
hp.setrelheap()

just print the heap somewhere:
h = hp.heap()
log.debug(f"\nheapy: {h}")

or possibly interrupt the code execution and inspect the hp object:
code.interact(local=dict(globals(), **locals()))

A typical dump in pyFF's mainloop then looks like this

Partition of a set of 117936 objects. Total size = 75634733 bytes.
Index Count % Size % Cumulative % Kind (class / dict of class)
© 1771 2 59385607 79 59385607 79 bytes
1 25917 22 8466168 11 67851775 90 dict (no owner)
2 25388 22 2640352 3 70492127 93 dict of pyff.samlmd.EntitySet
3 23656 20 2232132 3 72724259 96 str
4 25388 22 1218624 73942883 98 pyff.samlmd.EntitySet
5 6795 6 380520 74323403 98 1xml.etree._Element
6 2501 2 199024 74522427 99 tuple

o = N

7 870 1 154828 © 74677255 99 types.CodeType

8 1024 1 139264 © 74816519 99 function

9 45 © 127872 © 74944391 99 dict of module
<196 more rows. Type e.g. '_.more' to view.>
Another way of profiling pyFF's memory usage is just following RES in top
or htop for a long-running pyFF/gunicorn process, that has a 60s refresh
interval. I normally use this pipeline

- when update:
- load:
- edugain.xml
- when request:
- select:
- pipe:
- when accept application/samlmetadata+xml application/xml:
- first
finalize:
cacheDuration: PT12H
validUntil: P1@D
- sign:

key: cert/sign.key

cert: cert/sign.crt
emit application/samlmetadata+xml
- break

- when accept application/json:
- discojson
- emit application/json
- break

to feed the edugain feed that has been dowloaded using

S curl http://mds.edugain.org/ -o edugain.xml

Un/Pickling etree.ElementTree object

Here we demonstrate that externally parsed etree.ElementTree objects can
be pickled (serialized) to be consumed later in pyFF, without the need to
parse.

from 1xml import etree, objectify

import pickle

Create pickled datafile

source = open("edugain.xml", "r", encoding="utf-8")
sink = open("edugain.pkl", "w")
t = objectify.parse(source)

p = pickle.dumps(t).decode('latin1")
sink.write(p)

Read pickled object back in pyFF
def parse_xml
return pickle.loads(io.encode('latini'))

In metadata parser:
t = parse_xml(content) #Instead of parse_xml(unicode_stream(content))

Using un/pickling, pyFF's gunicorn starts out using ~800Mb of RES that
slowly extends to a steady 1.2-1.5G.

xml.sax etree.ElementTree parser

This code uses the event based xml.sax parser to <create an
etree.ElementTree object for pyFF, inside pyFF. As of the moment of
writing, pyFF refuses validate the result, but it produces correct
metadata?

The parsing could be brought outside of pyFF to create a dictionary type
of object to be read and parsed as a metadata representation to create the
ElementTree object in pyFF instead of parsing XML.

https://docs.python.org/3/library/xml.sax.reader.html
import xml.sax
class XML(xml.sax.handler.ContentHandler):
def __init__(self):
self.current = etree.Element("root")

self.nsmap = { 'xml': "http://www.w3.org/XML/1998/namespace’}
self.buffer = "'

def startElement(self, name, attrs):
attributes = {}
for key, value in attrs.items():
key = key.split(':")
if len(key) ==
if key[@] == 'xmlns':
self.nsmap[key[-1]] = value
else:
attributes[f"{{{ self.nsmap.get(key[0], key[0]) }}}{
key[-1] }"] = value
elif value:
attributes[key[-1]] = value

name = name.split(':')
if len(name) == 2:
name = f"{{{ self.nsmap.get(name[0], name[0]) }}}{ name[-1] }"
else:
name = name[-1]
self.current = etree.SubElement(self.current, name, attributes,
nsmap=self.nsmap)

def endElement(self, name):
self.current.text = self.buffer
self.current.tail = "\n"
self.current = self.current.getparent()
self.buffer = "'

def characters(self, data):
d = data.strip()
if d:
self.buffer += d

def parse_xml(io, base_url=None):
parser = xml.sax.make_parser()
handler = XML()
parser.setContentHandler (handler)

parser.parse(io)
return etree.ElementTree(handler.current[0])

Using xml.sax parser pyFF's gunicorn starts out using ~800Mb of RES that
slowly extends to a steady 1.2-1.5G.

Run pyFF in a uwsgi server

#!/bin/sh

bin/uwsgi \
--http 127.0.0.1:8080 \
--module pyff.wsgi \
--callable app \
--enable-threads \
--env PYFF_PIPELINE=edugain.yaml \
--env PYFF_WORKER_POOL_SIZE=16 \
--env PYFF_UPDATE_FREQUENCY=60 \
--env PYFF_LOGGING=pyFFplus/examples/debug.ini

Long-run test reveals comparable memory usage as gunicorn, but there seem
to be more knobs to play with.

One of the things we can do against boundless growth of uwsgi is the use
of --reload-on-rss <limit>, this kills any worker that exceeds the RSS
limit, but results in an empty metadata reply, which is unwanted
behaviour. If however, we also supply --lazy, the app is loaded in the
worker(s) and the (re)start of each worker then also triggers the reload
of metadata. This could be a compromise if the VM is less cpu bound than
memory?

Empty Metadata set while refreshing

It turns out pyFF returns an empty metadata set while refreshing, which is
unwanted behaviour. The following code, inserted just before the final
return in .api#process_handler inspects the validity of the Resource

metadata. Having a loadbalancer inspect pyFF and temporarily evicting the
server from pool if it receives a 500 could create a stable service.
def process_handler():

Only return request if md is valid?

valid = True

log.debug(f"Resource walk")

for child in request.registry.md.rm.walk():
log.debug(f"Resource {child.url}")
valid = valid and child.is_valid()

if len(request.registry.md.rm) == @ or not valid:

log.debug(f"Resource not valid")

500: The server has either erred or is incapable of performing the
requested operation.

raise exc.exception_response(500)
else:

log.debug(f"Resource valid")

return response

Performance-test branch

Incorporated the "store.py" changes in this branch
https://github.com/IdentityPython/pyFF/compare/preformance-tests to see
how that would change the memory consumption of pyFF, but it didn't change
much. It ends up using ~1.8G of RES after several hours of continuously
(60s) refreshing the edugain metadata feed.

The changes try to store entities as their serialized (tostring) version
of the metadata, and re-parse it on demand. The idea being that we don't
need to keep track of the whole parsed tree, but just the serialized
entities.

Parked

https://tech.buzzfeed.com/finding-and-fixing-memory-leaks-in-python-413ce4

266e7d

(never got around to go this deep into python debugging)

Size limitations

We created controlled mock metadata sets containing multitudes of edugain
metadata (e.g. 5k, 10k, 20k and 100k entities) to see how pyFF would cope
with that amount of entities and metadata.

The mock metadata is available here:
https://gitlab.geant.org/TI_Incubator/mockup-metadata

Conclusions

There is no real theoretical reason for the XML processing to be this way
(apart from XML Dsig Verification). But it would require a total rewrite
to make improvements (for pyFF at least: get rid of elementTree)

XML DSig is not helping since it requires c14n and this needs to be done
recursively.

Overall, we did not manage to achieve any significant improvements, but we
did confirm that the problem is real and we did create a test suite and
test most of the popular SAML stacks.

https://tech.buzzfeed.com/finding-and-fixing-memory-leaks-in-python-413ce4266e7d
https://tech.buzzfeed.com/finding-and-fixing-memory-leaks-in-python-413ce4266e7d

