
www.geant.orgwww.geant.org

Click to edit Master title style

• Click to edit Master text styles
• Second level

• Third level

• Fourth level

• Fifth level

24/04/2019 1

Trust & Identity Incubator
(De)Provisioning users activity

www.geant.org

Uros Stevanovic

Sprint Demo, 2020-07-02

Public

www.geant.orgwww.geant.org

Remote access

www.geant.orgwww.geant.org

Remote access

“user”

www.geant.orgwww.geant.org

Remote access

“user” “resources”

www.geant.orgwww.geant.org

Remote access

“user” “resources”“AAI”

www.geant.orgwww.geant.org

• Using web services typically involves “in-time”
release of attributes
• Up-to-date info (e.g. behind a proxy/IdP)

• Flows are well defined

• Numerous activities are solving this problem

• Non-web services require “specialized” flow
• Additional credentials (e.g. SSH keys)

• Once created, users “bypassing” IdPs (or proxies)

Web vs non-web services

www.geant.orgwww.geant.org

• Provision (and deprovision) users:
• Create accounts

• Provide necessary info to services

• Provide access credentials (e.g. SSH keys)

Users using resources

www.geant.orgwww.geant.org

• Provision (and deprovision) users:
• Create accounts

• Provide necessary info to services

• Provide access credentials (e.g. SSH keys)

• Information up-to-date?

Users using resources

www.geant.orgwww.geant.org

• Provision (and deprovision) users:
• Create accounts

• Provide necessary info to services

• Provide access credentials (e.g. SSH keys)

• Information up-to-date?

• Deprovision users?

Users using resources

www.geant.orgwww.geant.org

• Two (at least) solutions:
• PERUN

• FEUDAL

• Decentralized vs Centralized

• Asynchronous vs sequential

• General vs per-service data format

(De)Provision users activity

www.geant.orgwww.geant.org

• Membership Management Service
• VO and group management

• User management

• Service management

• Customizable

• Synchronization to/from external source (e.g. LDAP)

• REST API

• Developed and maintained by CESNET

• One use case: MMS for a proxy

• Typically “hidden” from a “regular” user

PERUN

www.geant.orgwww.geant.org

PERUN

www.geant.orgwww.geant.org

PERUN

www.geant.orgwww.geant.org

• Flow is not “user-centric”, i.e. deployment is typically
not decided by the user

• Centralized model
• Master + slave model

• More tightly integrated (akin to “business environment”)

• Trust level required between sites and PERUN is high

• Customized communication (format per service)

• Synchronous deployment
• Service needs to be online

• Typically SSH connection to services

PERUN User Provisioning

www.geant.orgwww.geant.org

• Federated User Credential Deployment Portal
• Web application (OIDC client)

• Provision/deprovision users

• Deploy credentials (e.g. SSH)

• AuthZ discrimination

• Architecture
• Web portal (UI)

• Backend+database (user info and credentials)

• Clients (deployed service side) + “adapters”

• Pub-Sub

FEUDAL

www.geant.orgwww.geant.org

FEUDAL

• Web portal (user interaction point)

• REST API

• Backend
• Django

• RabbitMQ (Pub-Sub)

• Clients (Go, Python, etc)

• Scripts
• Adapters

• JSON data format:
• Status

• User info

• credentials

www.geant.orgwww.geant.org

FEUDAL

www.geant.orgwww.geant.org

• OIDC client

• User-centric flow
• Typically user is in control

• Deployment per service, per VO

• Decentralized model
• Server + client model

• Clients runs at sites (admin control), trust level not necessarily
very high

• Client only receives the info (user_info, JSON)

• Standardized communication

• Asynchronous communication
• Pub-sub, outgoing connection at clients

• Flexible messaging (resending upon failure, onboarding, etc)

FEUDAL

www.geant.orgwww.geant.org

• OIDC client

• User-centric flow
• Typically user is in control

• Deployment per service, per VO

• Decentralized model
• Server + client model

• Clients runs at sites (admin control), trust
level not necessarily very high

• Client only receives the info (user_info,
JSON)

• Standardized communication

• Asynchronous communication
• Pub-sub, outgoing connection at clients

• Flexible messaging (resending upon failure,
onboarding, etc)

Side-by-side comparison
FEUDAL

• MMS (Membership management
service)
• Flow is not very “user-centric”, i.e. deployment

is typically not decided by the user

• Centralized model
• Master + slave model

• More tightly integrated (akin to “business
environment”)

• Trust level required between sites and PERUN
is higher

• Customized communication (format per
service)

• Synchronous deployment
• Service needs to be online

• Typically SSH connection to services

PERUN

www.geant.orgwww.geant.org

• FEUDAL and PERUN have complementing flows/use cases

• Tight integration, easy-to-understand deployment, easy VO
deployment  PERUN

• Flexible model, user may decide, asynchronous decentralized
communication  FEUDAL

Usage consideration

www.geant.orgwww.geant.org

• FEUDAL and PERUN have complementing flows/use cases

• Tight integration, easy-to-understand deployment, easy VO
deployment  PERUN

• Flexible model, user may decide, asynchronous decentralized
communication  FEUDAL

How to proceed?

Usage consideration

www.geant.orgwww.geant.org

• Not PERUN or FEUDAL, but both

• Centralized model needed/expected/reasonable 
PERUN:
• Cloud apps (e.g. GSuites)

• Mail lists

• LDAP (executed by PERUN)

• Windows apps

• Decentralized model  FEUDAL:
• Provision users for SSH access to VMs

• LDAP (executed on site’s side)

• Mail lists (via LDAP)

• Further plugins

Use cases

www.geant.orgwww.geant.org

• PERUN + FEUDAL:
• PERUN is an MMS (users’ info is up-to-date)

• FEUDAL is a “client” of PERUN (or other MMS)

• Centralized Model  PERUN directly executes action

• Decentralized Model  PERUN via FEUDAL updates
info

Up-to-date info / Deprovision users

www.geant.orgwww.geant.org

API

PATH METHOD DESCRIPTION

at/ PUT Update a user using an access token. The

access token is used to retrieve an up-to-date

userinfo.

userinfo/ PUT Update a user using a plain userinfo.

users/

users/?vo=<vo>

GET Retrieve the subjects of the registered users.

Can be filtered by vo.

user/<sub>/ GET

DELETE

Check if the user with sub <sub> is registered.

Delete the user with sub <sub> from feudal.

www.geant.orgwww.geant.org

API

• JSON based API, userinfo

• API:
• Get all users (also per VO)

• Update user info

• Delete a user

• Check if user exists

{

"userinfo": {

"iss": "https://proxy.acc.eduteams.org",

"sub": “<sub>@eduteams.org",

"name": "Uros Stevanovic",

"given_name": "Uros",

"family_name": "Stevanovic",

"email": "uros.stevanovic@kit.edu",

"ssh_key": “<some_key>",

"eduperson_entitlement": [“<group1>",

“<group2>"

],

"eduperson_targeted_id": [“<some string>@eduteams.org"],

"eduperson_principal_name": ["urost@acc.eduteams.org"],

"eduperson_scoped_affiliation": ["member@acc.eduteams.org"]

}

}

www.geant.orgwww.geant.org

• FEUDAL “look and feel” + SSH use case

• FEUDAL API (MMS + FEUDAL)

• FEUDAL update of user info

• FEUDAL LDAP use case

DEMO

27 www.geant.org

Achievements

• Provision users, via PERUN, FEUDAL, or PERUN+FEUDAL:
• Cloud applications

• LDAP (+ Mail lists)

• Access to VMs (SSH)

• Windows applications

• Centralized + Decentralized

• Up-to-date info

• Deprovision users

Thank you

www.geant.org

Any questions?

© GÉANT Association on behalf of the GN4 Phase 3 project
(GN4-3).
The research leading to these results has received funding
from
the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 856726 (GN4-3).

