

Open Clouds for Research Environments

Test and validation suite for cloud services

First European perfSONAR User Workshop – London UK, 5 June 2019 Ignacio Peluaga

Copyright @ CERN 2019

This presentation is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

OCRE receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 824079.

The OCRE Project

- O Lead by GEANT, the Open Clouds for Research Environments (OCRE) project aims to stimulate the usage uptake of commercial cloud services by the European research community
- Through a tender resulting in framework agreements with suppliers, which research institutions can use to buy commodity cloud
- O By making available 9.5 million € in cloud adoption funds from the EC, for the research community to use
- O Cloud providers bid as part of a public tender procedure
- Use HNSciCloud tests to assess providers' technical readiness level

More info: ocre-project.eu

The HNSciCloud Project

- O Helix Nebula The Science Cloud
 - Provided an Hybrid cloud platform for the European research community
 - Collective effort of 10 procurer Research
 Organisations forming the Buyers Group
 - Expressing the need to increase the analysis capability and capacity offered to their users
 - Europe based providers of commercial cloud services bid to participate in the project. Those meeting the requirements and technically validated develop the system

HNSciCloud testing activity

O CERN

- CERN Batch service
- GPU (Machine learning)
- PerfSONAR
- VM Provisioning and Personalisation
- Dockerized deployment of EOS+CERNBOX+SWAN
- Security assessments

O CNRS

- HTCondor dynamic expansion
- O LHC_VO MC

O EMBL

Marine Metagenomics

O ESRF

 Functionality and user-friendliness of cloud interfaces

O INFN

- O Bellell SIM PROD
- O Dynfarm scale
- O DODAS

OKIT

- Batch system extension
- O CPU benchmarks
- O Fed auth with ECP SAML

O SURFsara

- BBMRi import and testing of images/recipes
- O LOFAR/BBMRI data transfer
- O LIGO/VIRGO

O IFAE

- MAGIC hybrid cloud
- CTA_dirac data fetching

O DESY

- HPL and HPCG (HPC)
- SIMEX (photon science)
- Serial X-Ray (Crystallography)

Lessons learned

- O Design and implement a tool that packages the tests from HNSciCloud, to be used to technically validate public cloud providers biding to the tender
- O Added value:

Consistency

Faster testing

Cost effectiveness

Efficient testing

The Solution

OCRE Test Suite

- To technically validate all cloud services selected in the OCRE Framework, based on tests assembled by HNSciCloud
 - Written in Python
 - O Provision of the stack with Terraform
 - Deployment of tests on Docker containers to
 Kubernetes cluster (abstraction layer)
 - O Simple YAML configuration
 - O Results: JSON on S3 bucket on CERN cloud
 - NodeJS service for verification (under development and testing)

OCRE Test Suite

OProcess

- 1) User clones the public repository
- 2) Configuration by filling *configs.yaml* and *testsCatalog.yaml*
- 3) The test-suite, according to configs.yaml, will provision raw VMs and then bootstrap a Kubernetes cluster on them
- 4) Once the cluster is ready, the testsuite will deploy the tests according to *testsCatalog.yaml*: these run on Docker containers

Tests catalog

Tests Catalog

Existing test

- Compute: CPU benchmarking with containers (Domenico Giordano CERN)
- Storage: S3 endpoints (Oliver Keeble CERN)
- GPUs: Distributed training and optimisation of Deep Learning models (Sofia Vallecorsa CERN)
- Network: Performance measurements with perfSONAR (Shawn McKee University of Michigan & Marian Babik CERN)
- O Data Repatriation: From the commercial cloud provider to Zenodo (Ignacio Peluaga CERN)

Tests under development

- HPC: FDMNES Simulation of X-ray spectroscopies (Rainer Wilcke ESRF)
- DODAS: Emulate CMS jobs to verify that the node is able to run real workflows as in DODAS HTCondor environment (Daniele Spiga & Diego Ciangottini – INFN)

O More to come

- Disk access stress, with non-streaming I/O patterns (EMBL)
- O HDF5 io (DESY)
- Data isolation test (SURFsara)
- SLURM (SURFsara)

Network test

perfS NAR

K8s pod deployment

testsCatalog.yaml

cpuBenchmarking:
run: true

perfsonarTest:
run: true
endpoint: psb01-gva.cern.ch
hpcTest:
run: true
nodes: 3


```
apiVersion: v1
kind: Pod
metadata:
name: ps-pod
spec:
 hostNetwork: true
 containers:
 - name: ps-cont
  image: perfsonar/testpoint:latest
  securityContext:
   privileged: true
  imagePullPolicy: Always
  env:
  - name: ENDPOINT
```

value: psb01-gva.cern.ch

K8s pod deployment

O Process

- 1) Test-Suite completes YAML file according to configuration
- 2) Deploys the pod using kubectl and the YAML file
- 3) Container on the pod uses perfSONAR testpoint image, runs pScheduler
- 4) Once pod is ready: Test-Suite runs pScheduler tasks remotely using kubectl

pScheduler tasks run

```
#!/bin/bash

pscheduler ping $ENDPOINT | | exit 1

pscheduler task --format=json throughput --dest=$ENDPOINT > throughput.json

pscheduler task --format=json rtt --dest=$ENDPOINT > rtt.json

pscheduler task --format=json trace --dest=$ENDPOINT > trace.json

pscheduler task --format=json latency --dest=$ENDPOINT > latency.json
```


Output of commands is sent to json files

Harvesting results and completion

- 1) Test-Suite harvests the resulting JSON files from the pod using kubectl
- 2) Once all results are harvested, the perfSONAR pod is killed
- 3) Verification System(optional): launch the test-suite —skipping provisioning phase- from a server running on the CERN cloud. Harvested results are then pushed to an S3 bucket

Testing the test suite

- O Ran on
 - CERN Cloud (OpenStack), Exoscale (CloudStack), CloudFerro (OpenStack)
 - Detailed and processed results will come later

- O More to come
 - T-Systems (OpenStack), Microsoft Azure, Google Cloud, AWS, ...

T··Systems·

Next steps

Network test: perfSONAR

- OUse pScheduler's API instead of CLI
- ORun latencybg task instead of latency
- OManage, process and homogenize pScheduler results

Test-suite

ONew release

- Multiple, parallel clusters
- NAT support
- Support of non ROOT access
- Improved logs
- Implement proper results verification: how to avoid fake results?
- ODevelop a dashboard to show results
- OAdd more tests
 - Contributions?

Test contribution

OStep 1

Contact the test-suite development team

OStep 2

OAssessment of the work to be done and set up requirements

OStep 3

OInfo about documentation and contact of the person providing the test plus the license governing it

Get involved

PUBLIC REPOSITORY

https://github.com/cern-it-efp/ocre-testsuite

DOCUMENTATION

https://ocre-testsuite.readthedocs.io

OCRE WEBPAGE

https://ocre-project.eu

Open Clouds for Research Environments

Thank you

