DDoS Mitigation @ SURFnet

Albert Hankel Productmanager Security Services Vienna, 10-11-2015

DDoS-as-a-Service

Why a DDoS attack?

- Disrupt entire ICT infrastructure
- Threat is usually from the inside very little organized crime in HE&R

Because we can" (vandalism)

Two types of attack

Volumetric attacks (either in bits/s or packets/s)

- Target infrastructure or access
- Can be detected by NRENs (mostly)
- Often brute force

Application layer attacks

- Target specific services
- Seem/are legitimate traffic to NRENs
- More sophisticated; makes use of vulnerabilities in application

Volumetric attacks: bits vs packets

We see daily attacks, 5 on average...

DDoS prevention and mitigation

1) Architecture principles

Our network simplified

2) Monitoring

SURFcert

Organization of Team

- Operational security for the SURFnet constituency
- 24x7 service in close coop with local security teams
- Members from connected institutions and SURFnet
- Oldest *emergency response team* in the Netherlands

Monitoring

- General and fine-grained traffic flows (nfsen and peakflow)
- Outside intelligence reports (e.g. shadowserver open resolvers)
- Incident analysis
- Sharing intelligence (national, international)

SURFcert monitoring

Monitoring access for institutions: TrafMon

Monitoring access for institutions: SURFstat

3) Mitigation

Network filtering

SURFnet washing-machine

SURFnet washing-machine – Denial-of-Service

SURFnet washing-machine – Detection

SURFnet washing-machine – Activate washprogram

SURFnet washing-machine – DDoS in the washing-machine

Washing effect

Pilot: self-service network filtering

Firewall-on-Demand

Pilot

- 14 institutions participating
- Two months (until end of year)
- Testing functionality

Finding the best place to mitigate

Upstream (us)

- Standard security measures on customer connection
- The "washing-machine" for first aid
- Pre-emptive filters (rate limiters) on the core routers
- Self-service filtering

Firewall (institutions)

- Not always the right solution
- Not a remedy for flooded connections
- We are setting up a project to see if we can help with application layer Can help in case of SYN flooding limiting)

4) Tracing the culprits

Who is attacking?

- The (D)DoS 'source' is often an internal factor (person)
- Match timestamps of attacks with class & exam schedules
- Collaborate with people from education
- Report findings to the police

Advise against NAT

Best practice at one of our institutions (freely translated quote):

- Student attacks his own IP address
- We do not have a NAT, but provide each computer with a public IP address
- All the computer rooms have their own separate VLAN so we know where the culprit is
- ActiveDirectory logging allows us to connect computer to student
- So we can apprehend the student within 2 minutes
- We deliver the student with logging proof to the dean and he confessed immediately

Something related to DDoS but different: legal issues

The BotLeg Project (1/2)

New project (just started):

Aim is to enhance legal certainty in botnet-fighting and anti-botnet operations

Context

Combatting botnets, which facilitate many forms of cyber-attacks, is a key challenge in cybersecurity. The classic crime-fighting approach of prosecuting perpetrators and confiscating crime tools fails here: botnets cannot be simply 'confiscated', and law-enforcement's reactive focus on prosecuting offenders is ill-suited to deal effectively with botnet threats.

A wider set of anti-botnet strategies, including pro-active strategies and public-private cooperation, is needed to detect and dismantle botnets. Public-private anti-botnet operations, however, raise significant legal questions: can data about (possibly) infected computers be shared among private parties and public authorities? How far can private and public actors go in anti-botnet activities? And how legitimate are public-private partnerships in which private actors partly take up the intrinsically public task of crimefighting?

Objectives

- Investigate legal limits and possibilities for anti-botnet operations
- Raise awareness among stakeholders on such operations
- Develop guidelines / code of conducts

The BotLeg Project (2/2)

The overall research question is: under which conditions can efficacious public-private anti-botnet operations be lawfully and legitimately undertaken?

With the following sub-questions:

- Which types of operations are desired by public and private stakeholders to efficaciously combat botnets?
- Under which conditions can botnet-related information be exchanged among private parties and between private and public parties?
- Under which conditions are intrusive anti-botnet operations lawful, i.e., what are the legal limits and possibilities?
- Which requirements can be formulated to enhance the legitimacy of Public-Private Partnerships in anti-botnet operations?
- Which practicable guidelines and codes of conduct for stakeholders can be derived from these findings?

In Summary

To combat DDoS (and other) attacks, we need to:

- Minimize structural weaknesses
- Monitor at multiple layers (institutions, NREN, upstream providers)
- Mitigate at multiple layers (idem)
- Trace (and prosecute) perpetrators

The challenge here is that all these items usually cannot be addressed by one party – technical, organizational, forensic and legal collaboration is needed

Questions?

Albert Hankel albert.hankel@surfnet.nl

Creative Commons "Attribution" license: http://creativecommons.org/licenses/by/3.0/

