
canarie.ca | @canarie_inc

GREN Map: High-Level Design 
Proposal
Ryan Davies, Software Developer | Oct 1, 2019



canarie.ca | @canarie_inc 2

Objective

> Design a system to gather, store, and consolidate data 
representing the GREN network
• …with a minimum of repetitive, onerous work
• …for the purpose of visualizing it



canarie.ca | @canarie_inc 3

Challenges

> Core problem: distributed data from hundreds of sources
• highly-variable source formats, e.g.

─ highly-curated databases
─ Ansible configurations
─ spreadsheets
─ human memory
─ etc.

• highly-variable source data definitions, classifications, identification, 
availability

• multiple sources may report shared network infrastructure, resulting 
in duplication

• data expiry
• data not published

> Work to collect and collate is onerous, and repeated by many 
actors many times.



canarie.ca | @canarie_inc 4

Peer Projects

> There is no current implementation that captures the 
entire GREN in a dynamic visualization.

> Investigate parallel projects
• Collaborate and harmonize efforts
• However, the GREN map project has unique needs, as 

identified by our requirements gathering exercise



canarie.ca | @canarie_inc 5

Proposed Solution

> Federate data collection and curation via a flexible 
module that:
• ingests from various sources into a common schema
• cleans & integrates each import with other sources, if 

applicable
• allows manual curation after ingestion
• exports to a common format (GRENML)
• registers remote sources, if applicable, and polls routinely for 

fresh data (“pull” paradigm)
• logs all activity, for monitoring, debugging, and security

> Once the above has been done, a reference visualization 
may be built upon any level of data in the hierarchy 
(most notably the top level).



canarie.ca | @canarie_inc 6

High Level

> Input … “magic” … output



canarie.ca | @canarie_inc 7

Actually…

> This magic black box would be a set of magic boxes, 
each maintained by a REN.



canarie.ca | @canarie_inc 8

The “Flexible Module”

> Core features:
• pull from and understand a variety of sources, including but not limited to 

spreadsheets/CSV, Ansible, and most notably, GRENML
• mechanism to resolve conflicts and missing information in the set of sources

─ generally human-led resolution, remembered by the system
• store the consolidated data
• allow manual curation of the data
• publish this data to GRENML on demand
• publish this data directly for visualization

> Additional features such as authentication & authorization, fault 
tolerance, etc.

> Likely a set of Docker containers.



canarie.ca | @canarie_inc 9

> Every REN publishing data would be expected to have an 
instance of the module.
• RENs without the capacity to maintain their own instances may:

─ rely on others, likely their “parents” in the hierarchy, to spin up modules on 
their behalf, or

─ rely on their “parents” to simply publish their data (not preferred)

> A consortium representing the GREN would maintain 
the “top” level instance module.
• This would provide the visualization of the entire GREN.

Hierarchical Federated Distribution



canarie.ca | @canarie_inc 10

Module Extended Features

> Data sources listed in a registry
• Various types of files, and remote GRENML sources
• For remote sources, the remote source would have the ability to 

manage their own entry

> “Pull” vs. “push” paradigm
• Pull seemed to be more in line with expectations of system function.

> Data cleaning & integration
• This is an important core problem
• Deduplication, various representations, ownership, missing data, 

conflicts
• Implement a set of rules, managed by a human

─ “when you see this, do that”

> Manual data curation would have a “preview” function



canarie.ca | @canarie_inc 11

Participation Request
> Support from the GREN community is solicited to assist in 

the creation various components of this module
> CANARIE will identify work packages in a microservice 

paradigm on the following topics:
• Data ingestion

─ GRENML
─ CSV
─ Ansible

• GRENML export
• DB: staging & published
• Management:

─ API + server
─ UI

• Data source registry
─ Tree visualization

• Data source polling 
manager
• Cleaning & integration

─ Registry of rules
─ CRUD UI for rule 

management
• Authentication & 

authorization
─ On all API endpoints
─ Client for polling manager

• Visualization API + server
• Logging + visualization



canarie.ca | @canarie_inc 12

Work Packages

> Each work package would:
• be scoped between 1 FTE week and 3 FTE months
• include a set of design requirements, plus:

─ existing infrastructure & documentation
─ example input/output where appropriate

• indicate a required skillset for development, likely including:
─ Docker
─ Python
─ XML
─ Database ORMs
─ Javascript (React) + HTML
─ REST APIs

> Regular communication between teams actively developing 
work packages and CANARIE as project co-ordinator would 
be encouraged.



canarie.ca | @canarie_inc


